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Preface

This technical report presents  the results of the third twelve-
month effort on NASA-Langley Research Grant NAG-1-277. The NASA-
Langley Technical Monitor is Dr. Norman J. Johnston of the Materials
Division.

Only the experimental results of this program will be presented
here; all analytical results will be documented in a subsequent report.
All work was performed by the Composite Materials Research Group (CMRG)
within the Department of Mechanical Engineering at the University of
Wyoming. Co-Principal Investigators were Mr. Richard S. Zimmerman,
Staff Engineer, and Dr. Donald F. Adams, Professor.

Making major contributions to the program were Eric Q. Lewis,
William M. Pressnall, Mathew W. Graf, David B. Scholz, and Douglas L.
McLarty, wundergraduate student members of the Composite Materials
Research Group.

Use of commercial products or names of manufacturers in this report
does mnot constitute official endorsement of such products or
manufacturers, either expressed or implied, by the National Aeronautics

and Space Administration.
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SECTION 1

SUMMARY

This continuing study involves the investigation of unreinforced
(neat) resin properties ‘and their relations to composite material

behavior. . This third-year effort, following the first two studies in

which only neat resins were tested, [1,2], included carbon fiber-
reinforced composites testing as well. Two neat resin systems were
chosen here for detailed mechanical property characterization. CYCOM

907 epoxy, which was tested last year, was tested at one additional
condition to add to its data base. Also, four carbon fiber-reinforced
unidirectional composite materiéls incorporating previously studied neat
resin systems were chosen for mechanical property characterization.

The two neat epoxy resin systems were American Cyanémid CYCOM 1806
and Union Carbide ERX-4901B, an epoxy cured with»metaphenyleﬁe‘diamine
(MPPA). The four unidirectional‘carbon fiber composite systems chosen
- were AS4/3502, AS6/5245-C, T300/BP907, and C6000/18N6. The properties
of the resin s&stems contained in these cOmpésites were determined
during the.three years. of ‘this study. |

The CYCOM 1806 epoxy is a candidate material for use in aerospace
applicatibns, while the ERX-4901B(MPDA) is a second version of the epoxy
studied dufing the second year of this grant. Both resin systems were
supplied in wuncured bulk form by NASA-Langley, and were cast into
various shapes as required to prepare test specimens for use in this
study. Resin casting was performed using the same techniques developed
previously by the CMRG. ' These processes are diééussed in detéil in the

first-year report [1].




1.1 Neat Resin Properties

- Extensive mechanical characterization wés completed on the tw§ neat
resin systems, at six different environmental conditions. Dry and
moisture-saturated specimens were tested at‘ 23°C, 82°C, and 121°C.
Testing performed during the present study included tensile, torsional
shear, single-edge notched-bend (SEN) fracture toughness, coefficient of
thermal expansion, and coefficient of moisture expansion testé. Tﬁis
group of tests was performed to allow a 'comparison of material
properties for all resin systems studied. The CYCOM 907 epoxy was
tested at -80°C, dry in tension énd Iosipescu shear for use by
NASA-Langley in a special study.

The CYCOM 1806 epoxy neat resin is comparable to the Hercules 3502
epoxy mneat resin, the baseline resin system of the first-year study.
The ERX-4901B(MPDA) epoxy neat resin is comparable to the ERX-4901A(MDA)

epoxy version of the second-year study.

Tables 1 through 6 are repeated from Reference [2], with: the two

additional neat resins property averages added for each of the six’

environmental conditions. These tables thus provide afcompiete record
of all material properties for the ten neat resins tested to date. The
reader can compare resin systems at a glance for any of the six
environmental conditions.

The Union Carbide ERX-4901B(MPDA) degradéd rapidiy after moisture
saturation, which prevented measuring tensile properties above 60°C and

shear properties above 82°C. Table 5 therefore includes: no" terisile

properties and Table 6 no tensile or shear properties for the: ERX-4901B-

(MPDA) epoxy at these test conditions.
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Coefficient of‘thermal expansion (CTE) testing was ferformed on
both dry and moisture-saturated specimens. CTE's were measured over the
temperature range from 40°C to 121°C, using a computer-controlled quartz
glass tube dilatometer and. LVDT. The CYCOM 1806 neat epdxy behaved
quite linearly over the temperature range, while the ERX-AQOlB(MPDA} was
highly mnonlinear over the temperature range. Both epoxies displayed
higheerTE values:after‘being moisture-saturated, as expeétéd.

"Coefficient of moisture expansion (CME) testing was performed on
the two neat epoxy resin systems, from dry to saturation at 65°C.
Moisﬁure saturation levels were also measured, the CYCOM 1806 equili-
brium value being 2.9 percent by weight and the ERX-4901B(MPDA) 10.2
percent by weight. '

The CYCOM 1806 eﬁoxy performed as well as the Hercules 3502 base-
line epoxy at most conditions, and exhibited better strengths at the
lower temperature conditions than the 3502 system.‘ The CYCOM 1806 did
not retain stiffness and strength at the elevated temperature, wet
conditions as well as the 3502 system, however. The CYCOM 1806 epoxy
displayed, slightly lower tensile and shear moduli at all conditions
compared to the 3502 epoxy.

The ERX-4901B(MPDA) epoxy was very similar to the ERX-4901A(MDA)
epoxy tested in the second year. Tensilew;nd shear properties were only
slightly higher for the ERX-4901B(MPDA) in . the dr?' condition at the
lower temperatures. The ERX-4901B(MPDA) did degrade to a greater degree
when exposed to high test temperatures in the moisture-saturated
condition than did  the ERX-4901A(MDA) version of the Union Carbide
epoxy.

The two neat resins tested failed to satisfy the isotropic relation

between E, v, and G, just as observed in the first two studies [1,2].

-9




Why these bulk polymers do not respond to mechanical loadings in an
isotropic manner has yet to be explained.

Single-edge notched-bend (SEN) fracture toughness testing was also
performed on the two neat resin systems. Improvements in the technique
used in performing this test resulted in more reasonable values than in
the previous testing [1,2]. Both resin systems exhibited relatively low
Mode I Critical Energy Release Rates (GIC). Average Mode I Strain
Energy Release Rates are given in Table 7.

Scanning electron microscopy (SEM) was performed on selected failed
test specimens. These SEM photographs add to the large collection of
neat resin failure surfaces accumulated in References [1,2].

As stated earlier, only expérimental results are presented in this
report. All analytical predictions and correlations of composite
properties will be published in a subsequent report.

Specimen faﬁrication and test methods are presented in Section 3.
All experimental results are presented in detail in Sections 4 and 5 of
this report. Scanning electron microscope observations are included in
Section 6, and conclusions in Section 7. Appendi# A contains tables of
individual test specimen results for all tests. Individual stress-

strain curves are presented in Appendix B.

1.2 Unidirectional Composite Properties

Table 8 shows the average material properties for the four carbon
fiber—reinforcedn composite materials tested. Most of the composite
testing was conducted at the 23°C and 100°C dry conditions indicated in
Table 8. Additional transverse tension testing was performed at 120°C

since this test yields important strength and stiffness information

10
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about the matrix material. These are the first composite materials data
generated to date in this study. Additional composites testing will be

performed in the next-year study.‘




SECTION 2

Introduction

- This report presents the results of the third year of a continuing
study of unreinforced (neat) polymer resin materials being considered
for wvarious applications in the aerospaee industry. The carbon
fiber-reinforced composites data also being generated in thie program
willvpermit correlations using the micromechanics analysis developed
concurrently at the University of Wyoming.

The material properties being generated in this program are
providing a much needed data base for fully evaluating these new matrix
materials, and composite materials incorporating these neat resins. Ten
neat resins and four carbon fiber-reinforced composites have now been
characterized in the three years this program has been in progress. New
polymer resin systems have been developed during this time, intended to
fill needs in the aerospace industry for tough, strong, and stiff matrix
materials for use in primary load carrying structures. Some candidates
screened to date have been used in aerospace applications, but the large
breakthrough desired in toughness has yet to be achieved.

The Composite Materials Research Group (CMRG) at the University of
Wyoming has been an active participant in the screening of candidate
polymer matrices for a number of years. A process for fabricating neat
polymers into test specimens has been developed which has permitted the
detailed investigations conducted during the first three years of this
grant.

Composites data generated during this third year are now

providing the information needed to correlate experimental results




with micromechanics predictions, and thereby verify the numerical model.
After the verification process has been completed, considerable time and
effort should be saved by restricting preparation and testing of
composites to only those attractive candidates identified in the neat

resin testing and micromechanics predictions.
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SECTION 3

SPECIMEN FABRICATION AND TEST METHODS

3.1 .Introduction

An in-depth test program was completed on the two unreinforced
(neat) resin systems and four carbon fiber-reinforced composite
ma;erials identified in Sections 1 and 2. Some additional work on one
previously tested neat resin was also performed. Table 9 shows the neat
resin test matrix with the associafed environmental conditions; a total

of six combinations of temperature and moisture were used for the new

TABLE 9

NEAT RESIN TEST MATRIX

Test Temperature

Test Method Moisture Condition 23°C 82°C 121°¢
Tension ' Dry 5 5 5
Moisture-Saturated 5 5 5
30 total
Shear Dry 5 5 5
Moisture-Saturated 5 5 5
30 total
Fracture Dry 5 5 5
Toughness Moisture-Saturated 5 5 .5
30 total
Coefficient of Dry 3 -40°C to 121°C
Thermal Expansion Moisture-Saturated 3 -40°C to 121°C
o 6 total
Cdefficientfof 98%RH 65°C, Dry to Saturation
Moisture Expansion : 6 total

102 Specimens of Each
Resin System

Total for Two Resin Systems: 204 Specimens




neat resin mechanical characterization testing. Table 10 shows the
carbon fiber-reinforced composites test matrix; the composite mechanical
characterization testing was performed in the dry condition at two
temperaturces. Neat resin specimens were cast into test configurations
from bulk resin. Composite test specimens were cut from unidirectional
plates supplied by NASA-Langley. Dry test specimens were stored in
dessicators prior to testing while wet test specimehs were suspended
over distilled water at 74°C in sealed containers until fuliy moisture
saturated. Periodic weighings of these specimens were performed to
monitor weight gain versus time, to determine when moisture saturation

was achieved.

TABLE 10

CARBON FIBER-REINFORCED UNIDIRECTIONAL COMPOSITE TEST MATRIX

Test Method Test Temperature*
23°C 100°C
Axial Tension ' 3 3
Transverse Tension _ 3 3
Iosipescu Shear 3 3
Transverse Coefficient of Thermal Expansion 3 (-40°C to 121°C)
Transverse Coefficient of Moisture Expansion 6 (65°C, Dry to
Saturation)

27 Specimens of Each
Composite System

Total for Four Composite Systems: 108 Specimens

*All testing performed on dry specimens
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All static testing was performed using an Instron Model 1125
eléctromechanical universal testing machine. A BEMCO Model FTU 3.8
environmental chamber was used to maintain the desired‘elevated test
temperatures during testing. A Hewlett-Packard Model 21 MX-E minicompu-
ter Qés used to record and reduce all test data. A Control Data
Corporation CYBER 760 ﬁaiﬁframe computer system was used to generate all

plots of material properties and groupings of stress-strain plots.

3.2 (Cure Cycles for Neat Resins

The three neat resins tested in the current year were cast using
the same types of steel molds used during the first two years of this

study [1,2]. Recommended cure cycles provided ;by‘ the resin

. manufacturers were used to ensure that proper cures were obtained., An

initial gel at an intermediate temperature was done in the stéél molds
before the final éure.‘ The cure cycle for the CYCOM 1806 epoxy included
melting the frozen resin at 50-60°C, then stirring at 130°C for 15
minutes to ensure all components of the resin were thoroughly mixed. A
degassing step was then performed under 20-24 in. Hg vacuum at 100°C for
15-30 minutes, or until all bubbling and foaming subsided. An initial
cure at 135°C for 2 hours was followed by a final cure at 177°C for 3
hours while the specimens were still in the steel molds in an air
circulating oven. No free standing cure step was used with the CYCOM
1806 epoxy.

The ERX-4901B(MPDA) was formulated at 50-65°C by mixing 22 grams of
1,3 phenylendiamine (MPDA) catalyst per each 100 grams of bulk epoxy.
The mixture was stirred in a beaker under a fume hood until the catalyst

crystals were fully dissolved in the epoxy. The mixture was then poured
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iﬁto molds preheated to 100°C, and the resin degassed at this tempera-
ture under 20-24 in. Hg vacuum for 15-20 minutes, or until all bﬁbbling
subsided. The seams of all molds were sealed with sealant tape to
prevent the 1liquid resin from running out of the mold., The ERX-
4901A(MDA) epoxy, tested in last year's Stu&y, also required sealing
the mold seams as both versions are quite inviscid at the initial cure
temperature. An initial gel at 85°C for 5 hours was followed by an
intermediate cure at 120°C for 4 hours. A final cure was perforﬁed at
160°C for 10 hours in an air circulating oven after thé specimens had
been removed from the steel molds.

The CYCOM 907 (also known as BP907) was cured in an identical
fashion as in the second year [2] of this grant. The frozen resin was
melted in preheated moldsrat 100°C and subjected to 20-24 in. Hg vacuum
for 45-60 minutes before an initial cure for 5 hours at 130°C. A final
cure of 3 hours at 177°C was performed in an air circulating oven after
the specimens had been removed from the steel molds. The CYCOM 907 was
tested at one additional condition, viz., -80°C, dry, for a special
NASA-Langley application. Previous testing of ﬁhis neat resin at six
other environmental conditions was completed in the second year of this

grant {2].

3.3 Neat Resin Specimen Fabrication

A standard dogbone-shaped specimen was used for all neat resin
tensile testing. Specimens were 152 mm (6 in.) long by 5.1 mm (0.2 in.)
wide in the gage section, and 2.5 mm (0.1 in.) thick. Each specimen was
instrumented with a longitudinal extensometer to measure axial strain

and thus generate a complete stress-strain curve. A second
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extensometer was used to measure the transverse strain. Poisson’s.ratio
was then calculated using the measured longitudinal and transﬁerse
strains. Figure 1 shows the extensometer arrangement used on each neat
resin tensile specimen.

A cylindrical dogbone-shaped specimen was used for all neat resin
shear testing. .Specimens were 152 mm (6 in.) long by 7.4 mm (0.352 in.)
in diameter in the gage section and 12.7 mm (0.5 in.) in diameter in the
grip section. Each specimen was instrumented with a rotometer to
measure angle of twist and thus generate a complete shear stress-shear
strain curve. This test specimen and the rotometer were also used in
the two previous programs [1,2] and are explained in detail in those
reports. Figure 2 shows the typical torsional shear test setup used.

Neat resin fracture toughness testing was performed on the two neat
resins using the Single-Edge Notched-Bend (SEN) test method described in
ASTM Standard E399 [3]. Test specimens were cast from bulk resin in the
same manner as the tensile specimens, being 152 mm (6.0 in.) long, 12.7
mm (0.5 in.) wide, and 6.4 mm (0.25 in.) thick. This thickness was
twice the tensile specimen thickness, which allowed the assumption of
plane strain in the GIC calculation. Threé notches were cut along one
edge of éach specimen, spaced evenly along the specimen length to allow
for three tesﬁs of each 15.2 mm (6.0 in.) long rectangular specimen. A
water-cooled abrasive blade was used for this notching operation.
Figure 3 shows the thfee-point bend fixture used to tést the fracture
toughness specimens. Just prior to testing each specimen, a razor blade

cooled in liquid nitrogen was used to produce the small crack tip in the

21




Tension

in

Typical Extensometer Arrangement on a Neat Res

Specimen

Figure 1.

Typical Shear Test Specimen with Rotometer Arrangement for
Measuring Angle of Twist.
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sawcut notch required for this test to be valid, using a 1ight_tap on
the razor blade. Some experimentation is required on each resin syStem
to acquire the feel for the proper tapping force on the razor blade.
Too.hard a tap will result in a broken specimen while too soft a tap
will result in an unsatisfactory crack tip and an abnormally high
apparent toughness value.

At least three specimens of each neat resin system were used to
measure coefficients of thermal expansion (CTE). Specimens were 127 mm
(5.0 in.) long by 9.5 mm (0.375 in.) wide. All testing was performed
using a microprocessor-controlled quartz-tube dilatometer and an LVDT.
Figure &4 shows the CTE test apparatus. Data were acquired on 5%"
floppy disks and later transferred to a CYBER 760 for reduction and
plotting. A minimum of two thermal excursions between -40°C and 121°C
on both dry and moisture-saturated specimens were performed. A linear
regression curve-fit was performed on the length change versus tempera-
ture data to obtain the CIE for specimen tested.

Coefficient of moisture expansion (CME) measurements were performed
on the two neat resin systems, from dry to moisture saturation at 65°C,
A constant relative humidity of 98 percent was maintained using
distilled water in piexiglas moisture chambers. All CME tests were
conducted using the automated moisture expansion test faéility which is
shown in Figure 5. CME measurements are accomplished by using two
identical speciméns for each test. Both specimens are cut to 70 mm
(2.75 in.) by 70 mm (2.75 in.) square and then surface ground to a
thickness of 0.9 mm (0.035 in.). This large square specimen of very
small thickness is used to allow the assumption of one-dimensional

diffusion during the moisture absorption process (i.e., edge effects are
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Figure 5. Moisture Expansion Coefficient Chambers with Electronic
Balances on Top and LVDT's Mounted on the Side.

negligible). One specimen is hung from an electronié balance, which
measures the weightvgain due to moisture uptake as a function of time.
A secénd identical specimen is placed in a quartz-tube dilatometer and
an LVDT measures the in-plane 1linear expansion of this specimen
simultaneously in the same moisture chamber. Using these two
parameters, the strain with respect to moisture absorption is calculated
and then curve-fit using a linear regression routine. The strain versus
moisture curves are typically linear, resulting in a constant valﬁe of

CME.
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3.4 Composite Specimen Fabrication

The four carbon fiber-reinforced Vcomposites tested during this
program were cut from plates supplied by NASA-Langley. A wafér-cogled
abrasive saw was used to cut the panels into 0° tension, 90° tension, 0°
Iosipescu shear, 90° coefficient éf thermél expansion, and 90° coeffi-
cient of moisture expansion specimens. All specimens were stored in
dessicators prior to testing. Table 10 shows the test matrix for the
two environmental conditions used in the composites testing. Only dry
conditions were used in this composites testing.

All static testing was performed using an Instron Model 1125
electromechanical testing machine. A BEMCO Model FTU 3.8 environmental
chamber was used to maintain the desired elevated test temperatures. >A
Hewlett-Packard Model 21 MX-E mini-computer was used to record énd
reduce all data. A CDC Cyber 760 computer was used to generate all
plots of material properties and groupings of stress-strain plots.

A standard straight-sided tabbed specimen as described in ASTM
Standard D3039 [4] was used for all longitudinal tension testing. The
specimens were 300 mm (9 in.) long by'12.7 mm (0.5 in.) wide By 1.0 mm
(0.d4 in.) thick. Each specimen had glass fabric/epoxy tabs 64 mm (2%
in. long) bonded on each end to ensure adequate gripping during testing.
Instrumentation included two exten;ometers, one to measure axial strain
and a second to measure transverse strain for each test. Complete
stress-strain curves were generated. Poisson’s ratio was calculated
using the measured longitudinal and transverse strains. Figure 6 fshows
the typical extensometer arrangement used on the longitudinal tensile

specimens.
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Figure 6.

Figure 7.

Typical Extensometer Arrangement used on the Unidirectional
Composite Longitudinal Tension Test Specimens.

Composite Transverse Tension Test Configuration.
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Standard straight-sided untabbed specimens as described in ASTM
Standard D3039 [4] were used for all transverse tension tééting.
Specimens were 152 mm (6.0 in.) long by 25 mm (1.0 in.) wide by 2.0 mm
(0.08 1in.) thick. Pieces of emery cloth were placed betweéﬁ the
specimen and grips in the grip areas to prevent specimen damage and to
preclude premature failures in the grips. One extensometer was mounted
on each specimen to record the complete stress-strain response to
failure. Figure 7 shows a typical transverse tension test configura-
tion, including wedge grips and extensometer.

The Iosipescu shear test method as described in Reference [8,9;10]
was used for all in-plane shear testing. Specimens were 76 mm (3.0 in.)
long by 19 mm (0.75 in.) wide by 2 mm (0.08 in.) thick. Figure 8 shows
a typical specimen mounted in the Iosipescu shear test fixture. A 90°
notch was ground in each edge of the specimen and then a two-element
strain gage rosette was bonded in the gage section to measure shear
strain.

Transverse coefficient of thermal expansion (CTE) test specimens
were 127 mm (5.0 in.) long by 9.5 mm (0.375 in.) wide by 2.0 mm (0.08
in.) thick. Testing was pérformed using a microprocessor controlled
quartz-tube dilatometer and an LVDT. The apparatus is shown in Figure
4. Axial thermal expansion tests were not performed because of the very
low values of CTE expected, these being below the reasonable sensitivity
of the dilatometer apparatus. Two thermal éxcursions between -40°C and
121°C were performed on three test specimens for each material. Data
were acquired on the heat-up portion of each cycle only. A linear
regression curve-fit was performed on the length versus temperature data

points to obtain a CTE value for each specimen.
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Figure 8. Iosipescu Shear Specimen Mounted in the Test Fixture

Transverse coefficient of moisture expansion specimens were 70 mm
(2.75 in.) square by 0.9 mm (0.035 in.) thick. Only transverse CME
tests were performed on the composites because of the limited
sensitivirty of the quartz tube dilatometer, as previously disc;,lssed.

All CME tests were performed at 98 percent relative humidity and 65°C

from dry to saturation. The procedure is described in Section 3.3 of

this report,
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SECTION &4

NEAT RESIN RESULTS

4.1 Neat Resin Tension Test Results

Engineering constants measured included Young's modulus, E,
ultimate stress, o ultimate strain, €, and Poisson’s ratio, v.
Complete stress-strain curves to failure were recorded. Individual test
results and stress-strain curves are included in Appendices A and B,
respectively. Sﬁmmary tables were presented in Section 1.

Average tensile strengths are shown in Figure 9 for the two neat
resins, at three test temperatures for the CYCOM 1806 epoxy and four

test témperatures for the ERX-4901B(MPDA) epoxy. The CYCOM 1806 epoxy

maintained reasonable strength with increasing temperature while dry but

: dégraded significantly when moisture-saturated. The ERX-4901B(MPDA)

strengths were essentially nil at all moisture-saturated conditions. No

tensile properties were measured for the ERX-4901B (MPDA) at 121°C, wet

due to its significant softening at that condition. If the application
for the ERX-4901B(MPDA) were in a controlled dry environﬁent it would
perform very well, however.

Dry tensile strengths for both resin systems were greater than 70
MPa (10 ksi) at room temperature. The average strength for the
ERX-4901B(MPDA), at 97 MPa (1l4.1 ksi), was almost as high as the 109 MPa
(15.8 ksi) ERX-4901A(MDA) strength measured in the previous year [2].
Tensile strengths decreased as test temperature increased, as expected.

Tensile moduli average values are shown in Figure 10. The CYCOM
1806 retained its stiffness well over the full range of test tempera-

tures, although the average values were somewhat lower than those of
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most resins previously tested. The ERX-AQOIB(MPDA), at 5,6 GPa (0.81
Msi), recorded the highest stiffness value of all neat resins tested.
This was even slightly higher than that of the ERX-4901A(MDA) tested in
the previous year. Unfortunately, the ERX-4901B(MPDA) modulus values
decreased rapidly above 100°C, and were quite low at all test tempera-
tures when the material was moisture-saturated.

All tensile test specimens failed straight across the gage section,
similar to those in the previous report [2]. Figure 11 shows a typical
CYCOM 1806 tensile specimen failure. Figure 12 shows two ERX-4901B
(MPDA) specimens, one untested and one tested at the 121°C, dry
condition. No fracture occurred, but some necking of the specimen was
observed. This behavior was also seen in the ERX-4901A(MDA) epoxy
tested in the prior study [2]. Failure was defined as the point whgre
load dropped at the end of the test after necking had occurred.

Ultimate tensile strain average values are shown in Figure 13.
CYCOM 1806 strains increased slightly with test temperature when in a
dry condition. After moisture saturation the CYCOM 1806 strains tripled
over the dry values above room temperature with the room temperature,
wet value being only slightly higher than the room temperature dry
value. Ultimate tensile strains for the CYCOM 1806 were much higher
than the baseline 3502 epoxy strains at all test conditions. The
ERX-4901B ultimate tensile strains were typically lower than the CYCOM
1806 values but were slightly higher than the baseline 3502 epoxy values

at most test conditions.

4.2 Neat Resin Shear Test Results

Shear properties measured included shear modulus, G, shear

strength, Tu’ and ultimate shear strain, Ty Complete shear stress-
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shear strain curves to failure were recorded. Individual test results
and shear stress-shear strain curves are included in Appendiceé A aﬁd B,
respectively. Summary tables were included in Section 1.

Figure 14 presents the average shear strengths for the CYCOM 1806
and ERX-4901B(MPDA) epoxies tested. The ERX-4901B(MPDA) recorded the
highest shear strength of all the neat resins tested to date, exceed-
ing even the ERX-4901A(MDA) value obtained in the prior program [2].
The 127 MPa (18.4 ksi) is extremely high for neat resins and, taken with
it's high tensile strength and stiffnesses, make the ERX-4901B(MPDA)
epoxy a unique material system for reinforced composites. Unfortu-
nately, it's material properties fall quickly at elevated temperatures,
and even more rapidly after being exposed to moisture. The CYCOM 1806
epoxy performed quite well in shear, exhibiting degradation similar tov
~other resin systems studied. The CYCOM 1806 retained its shear strength
after moisture saturation as well as any previous resin system studied.

Shear modulus average values are plotted in Figure 15. The CYCOM
1806 epoxy shear stiffness values were only slightly lower than those of
previous resins tested, and it retained its shear stiffness well at all
six environmental conditions. The ERX-4901B(MPDA) exhibited the highest
room temperature, dry shear stiffness of any resin tested to date. Only
a slight reduction was seen at the intermediate temperature, dry condi-
tion, but at other conditions it again showed a dramatic drop in shear
modulus values, as expected. No shear properties were measured for the
ERX-4901B(MPDA) epoxy at the 121°C, wet condition due to its significant
softening at this condition.

Ultimate shear strain average values are shown in Figure 16. CYCOM

1806 shear strains were quite high being from 14-20 percent at the six
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test conditions. These values were 4 to 5 times the 3502 epoxy baseline
shear strains recorded. The ERX-4901B epoxy shear strain was similar to
the 3502 shear strain at the room temperature, dry condition; but
increased Athree-fold at e1e§ated test temperatures and after being
moisture saturated.

Figure 17 shows a typical failed CYCOM 1806 dogbéne-shaped torsion
specimen. It will be noted that the angle of fracture.is on a 45 degree
plane, implying the specimen failed on the tensile stress Plane during

the torsional shear test. Figure 18 shows a’ typical failed ERX-4901B

-(MPDA) torsional shear specimen. Its failure is similar to that of the

CYCOM 1806 at low test temperatures. The ERX-4901B(MPDA) epoxy softened
considerably at elevated temperatures, and after being exposed to
moisture, resulting in the typical twisting failure seen in Figure 19.
Fracture was initiated only after a large rotation of the cylindrical

specimen, as seen in Figure 19.

Figure 17. Typical Failed CYCOM 1806 Dogbone-Shaped Torsion Specimem
at Room Temperature, dry condition.
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Figure 19.

Typical Failed ERX-4901B (MPDA) Dogbone-Shaped Torsion
Specimen at Room Temperature, Dry Condition.

Typical Failed ERX-4901B (MPDA) Dogbone-shaped Torsion
Specimen Tested at 82°C, Moisture-Saturated Condition,
with Untested Specimen Shown for Comparison.
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4.3 Neat Resin Fracture Toughness Test Results

Mode I strain energy release rate values were measured for the
CYCOM 1806 epoxy and the ERX-4901B(MPDA) epoxy at six and four
environmental conditions, respectively, The ERX-4901B(MPDA) epoxy
became too soft to measure any properties at the highest test
temperature. Average GIC values for the CYCOM 1806 and ERX-4901B(MPDA)
are plotted in Figure 20. Both resins are equal in toﬁghness to the
resins tested in the prior program [2]. The CYCOM 1806 epoxy did show a

large increase in GI at the 82°C dry test condition, and at the 23°C,

c
moisture-saturated condition. The ERX-4901B(MPDA) epoxy apparently
weakened too quickly to record any increase in GIC at any test condition
different from 23°C, dry condition.

Average strain energy release rate values for the two neat resins

are given in Table 7. Individual GIc values are given in Appendix A.

4.4 Neat Resin Coefficient of Thermal Expansion Results

Table 11 lists the average CTE results for the two neat resins.
The CYCOM 1806 exhibited linear expansion behavior, yielding a constant
value of CTE over the test temperéture range, in both the dry and the
moisture-saturated condition. The ERX-4901B(MPDA) exhibited nonlinear
expansion behavior over the test temperature range. Table 11 includes
the calculated CTE values at three temperatures for the ERX-4901B(MPDA)
epoxy, as well as the equations used for the calculations. Using these
equations, the CTE at any temperature of interest can be calculated.

Both resin systems showed an increase in CTE after being moisture-
saturated, as observed in all previous resin testing also [1,2].

Individual curves and data are included in Appendix B of this report.
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Table 11

Average Coefficients of Thermal Expansion For the
Two Neat Resin Systems Tested

Resin System - Coefficient of Thermal Expansion CTE
(107%/°C)
Dry Moisture Saturated
CYCOM 1806 58.2 v 63.2
-60°C 23°C_93°C* -60°C 23°C 93°C#
ERX-4901B (MPDA) 22.6 61.6 94.4 13.5 90.5 155.4
9] DRY CTE = 5.078 x 1075 + 4.689 x 1077 x T(°C)

2) Moisture Saturated CTE = 6.917 x 1075 + 9,276 x 10°7 x T(°C)

- *CTE values calculated using Eq. (1).
#CTE values calculated using Eq. (2).
The CYCOM 1806 epoxy CTE values were slightly higher than the Hercules
3502 epoxy baseline resin in both the dry and wet conditions. The
ERX-4901B(MPDA) exhibited highly nonlinear behavior compared to the

linear behavior of the ERX-4901A(MDA) epoxy observed previously [2].

4.5 Neat Resin Coefficient of Moisture Expansion Results

Average coefficients of moisture expansion and moisture saturation
weight gains are given in Table 12. The measured CME of the CYCOM 1806
was slightly lower than that of the 3502 baseline epoxy, and exhibited
about 60 percent of the equilibrium moisture content of the 3502 epoxy.
The ERX-4901B(MPDA) epoxy had a slightly lower CME than the

ERX-4901A(MDA) version, and recorded the highest moisture saturation
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Table 12

Average Coefficients of Moisture Expansion and
Moisture Saturation Weight Gains For the Two Neat Resin
Systems Tested

Resin System Coefficient of Moisture Moisture Saturation
Expansion, CME Weight Gain
(1073 /M) (8M)
CYCOM 1806 : 2.53 2.9
ERX-4901B (MPDA) 1.00 10.2

value of all ten neat resins tested to date. The ERX-4901B(MPDA) epoxy
specimens also exhibited some surface blistering, which had not been

observed for any other resin system studied to date.

4.6 Relations Between Elastic Constants

Lack of satisfaction of the isotropic relation

E
¢ =20
was again observed for the two additional resin systems tested. This
behavior had been observed in the two previous studies [1,2]. Table 13

lists the elastic constants measured and calculated for the two latest
epoxy systems.

As can be seen in Table 13, the calculated shear modulus, G, is
almost always lower than the measured shear modulus. The calculated G
values are based on the Young'’'s modulus, E, and Poisson’s ratio, v,
measured in tensile tests on the epoxies. This behavior is identical to
that observed in the previous eight neat resin systems ([2]. The
CYCOM 1806 epoxy did agree to a higher degree at all conditions compared
to the 20 percent variance witnessed in the two previous studies.

The ERX-4901B(MPDA) agreed with the isotropic relation relatively

well at 23°C, dry, but diverged rapidly and to as great a degree as the
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Table 13

Measured Versus Calculated Shear Moduli

For Two Neat Resin Systems

Measured Measured

Measured Calculated G -G
meas calc

Neat Young's  Poisson’s  Shear Shear

Resin Modulus Ratio Modulus Modulus neas
System (GPa) (GPa) (GPa) (percent)
23°C, Dry

CYCOM 1806 3.03 0.39 1.24 1.09 12
ERX-4901B(MPDA) 5.58 0.33 2.21 2.10 5
82°C, Dry

CYCOM 1806 2.48 0.46 0.97 0.85 12
ERX-4901B(MPDA) 3.86 0.41 2.07 1.37 34
121°C. Dry

CYCOM 1806 2.14 0.44 0.90 0.84 7
ERX-4901B (MPDA) 0.14 0.45 0.48 0.05 90
23°C, Moisture-Saturated

CYCOM 1806 3.03 0.46 1.03 1.04 -1
ERX-4901B(MPDA) 0.76 0.48 1.24 0.26 79
82°C, Moisture-Saturated

CYCOM 1806 1.65 0.44 0.69 0.57 17
ERX-4901B(MPDA) -- -- -- - --
121°C, Moisture-Saturated

CYCOM 1806 0.34 0.38 0.21 0.12 43

ERX-4901B (MPDA)

ERX-4901A(MDA) epoxy tested in the previous year [2] when compared at

elevated temperatures and after moisture

conditioning.

The Young's

modulus for ERX-4901B(MPDA) at 121°C, dry was extremely low and probably

resulted in the high error calculated between G measured and G

calculated at this test condition.
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No explanation for these discrepancies can be offered at this time.
It is an interesting phenomenon and warrants additional study. No
additional bulk modulus measurements have been completed on any of the
neat resins of interest to allow that additional independent check on

the elastic constants.

4.7 Additional Neat Resin Test Results

Additional tension and shear testing was performed on one neat
resin from last year's program, viz, CYCOM 907 (BP907). Testing at only
the -80°C, dry céndition was done to add to the data base for the
CYCOM 907, which is a model laboratory system. Table 14 gives average
property values from both years for the GCYCOM 907 at the four test
temperatures utilized. Only dry specimens were tested at the cold
temperature. Individual test results are given in Appendix A. Tensile
and shear stiffness and strength values for thé CYCOM 907 1increased
slightly from the room temperature values when it was tested at the
subambient temperatures, and strain values dropped slightly. Poisson's
ratio for the CYCOM 907 was quite low at the -éO°C, dry test condition.
The small drop of Poisson’s ratio for the CYCOM 907 at the 121°C, dry
test condition can be attributed to possible experimental error. The
CYCOM 907 epoxy has a relatively low use temperature of 82°C and is
quite soft at the 121°C temperature [11]. Fracture toughness values at
the -80°C. dry condition, listed in Table 7, show a dramatic drop in
strain energy release rate compared to the room temperature value

measured last year [2].
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SECTION 5

UNIDIRECTIONAL CARBON FIBER REINFORCED COMPOSITE RESULTS

5..1 Introduction

All testing 'during the first two years of this grant had been
performed on only neat resin materials, the data generated being used in
the micromechanics analysis computer program to predict performance for
caﬁbon fiber-reinforced composites. These predictions had not been
verified by experimental testing until this, the third year of the
grant. Composite panels were supplied by NASA-Langley to allow testing
of composites incorporating these neat resin systems. Four carbon
fiber-reinforced composite materials were isupplied in  sufficient
quantities to perform longitudinal tension, transverse tension, in-plane
shear, transverse coefficient of thermal expansion, and transverse
coefficient of moisture expansion testing. Engineering constants
measured included axial and transverse moduli, E;; and E,,, shear
modulus, G,,, tensile strengths, o¢,, and o,,, shear strength, 7,,,
Poissbn's ratio, v,,, and ultimate strains, €,,, €,, and vy;,. Also

measured were transverse thermal and moisture expansion coefficients,

a,, and f,,.

5.2 Composite Fiber Volume and Void Volume Measurement Results

Fiber volume and void volume determinations were performed on the

four carbon fiber-reinforced composites received from NASA-Langley.




Nitric acid was used to dissolve the matrix resin in the four
composites. Three sampleé were digested for each composite, Wiéﬂ’the
average values being given in Table 15. Individual fiber volumevand
void volume results are given in Aﬁpendix A.

All four materials exhibited similar fiber volumes and theréfore
any variances in material properties cannot be attributed to fiber

volume variances.

Table 15

Average Fiber Volume and Void Volume Determinations for
the Four Carbon Fiber-Reinforced Composites

Material Fiber Void

System Volume Volume
(percent) ’ (percent)

AS4 /3502 64.5 1.1

AS6/5245-C . 63.1 1.1

T300/BP907 58.2 1.6

€6000/1806 63.4 1.8

Void volumes were also measured for the four composite material systems.
As Table 15 indicates, void volumes were bepween 1 and 2 percent. Void
volumes in similar aerospace materials are typically less than 1
percent. Measured void volumes here are oniy slightly greater than the
1 percent which probably had 1itt1e effect on the results for this

program.
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5.3 Composite Longitudinal Tension Test Results

Complete stress-strain curves to failure were recorded for all
tension tests. Individual stress-strain curves and test results are
included in Appendices A and B.

Figure 21 is a plot of the axial tensile strengths for the four
composite systems. The solid lines represent the room temperature, dry
results while the dotted lines represent the results at 100°C, dry. It
is difficult to compare the axial tension results between the materials
due to the different types of carbon fibers incorporated in the four
material systems. The AS4, C6000, and T300 high strength carbon fibers
have similar stiffnesses and strengths [5,6,7], while the AS6 fiber
stiffness is similar to those of the other three fibers, but it has a
slightly higher strength [5]. This fact could explain the slightly
highér tensile strength of the AS6/5245-C composite compared to ‘the
other three materials. Axial tension failures were quite typical of
those commonly observed for unidirectional carbon-reinforced fiber epoxy
composites in general, a typical failure being shown in Figure 22.
Little change in teﬁsile strength was seen at the elevated temperature
test condition, which was as expected. The fiber dominates behavior in
the axial direction and is relatively unaffected 'By the 100°C test
temperature.

Axial tensile moduli values are shown in Figure 23. [Little
differeﬁce was found between the four composites, as expected because of
the similar stiffness properties for the four fiber types. ‘Small
differences were seen in axial stiffness at the elevated temperature
test condition. The 100°C test temperature was not high enough to
produce a drop in axial stiffness since the carbon fiber completely

dominates behavior in that test direction.
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Axial tensile strains are shown in Figure 24. This property is
inherently dominated by the fiber used in the test. The AS6 and C6000
fibers have slightly higher ultimate strains, which are translated into
the composite behavior.

Axial tension average test results are given in Table 8. Indivi-

dual test results are included in Appendix A.

5.4 Composite Transverse Tension Test Results

Complete streés;strain curves to failure were also recorded for the
transverse tension tests. Individual stress-strain curves and test
‘results are given in Appendices A and B.

Figure 25 is a bar chart of transverse tensile strengths for the
four composite systems. This property is;highly dominated by matrix
performance and also by the interaction between fiber and matrix. Room
temperature transverse tensile strengths were similar for ther four
composites, but the T300/CYCOM 907 strength dropped dramatically at the
100°C test condition. Transverse tensile failure is characterized by a
straight line fracture across‘ the axis of the specimen, as seen in
Figure 26.

Transverse tensile moduli are shown in bar chart form in Figure 2%.
Moduli values followed the neat resin trend values in mbst cases. At
the 100°C test condition, the T300/CYCOM 907 composite modulus fell to
one-half of its room temperature value, as expected, while the other
composites retained their stiffnesses quite well. Transverse tensile

ultimate strains are shown in Figure 28.
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Strains at the 100°C test condition remained similar to the 23°C values,
except for the C6000/1806 and T300/BP907, which increased in magh‘i'tbude
slightly. |

Average transverse tensile properties are giver} in Table 8. A
third test temperature was added for the transverse tensile test
configuration only, as indicated in Table 8. The testing at 121°C was
done to provide additional data for this matrix-dominated configuration.
The test data indicates that useful properties are maintained by all

material systems except the T300/CYCOM 907 at the 121°C temperature.

5.5 Composite In-Plane Shear Test Results

Complete shear stress-shear strain curves to failure were recorded

for all of the composite in-plane shear tests. Individual shear

stress-shear strain curves and test results are given in Appendices A
and B. Average in-plane shear properties are listed in Table 8. .Figure
29 is a bar chart of in-plane shear strengths for the four carbon
fiber-reinforced composites. Small differences are seen between the
four composites at the room temperatﬁre condition but a much larger
variance is seen at the 100°C test temperature. The T300/CYCOM 907
composite degraded to one-half of its original shear strength at the
elevated temperature while the other three composites fell only about 20
percent from their room temperature shear strengths. In-plane shear is a
matrix-dominated property and thus these results were expected after
viewing the neat resin behavior. A typical failed shear specimen 1is
shown in Figure 30. Note the displacement between the right and left
halves of the specimen and the faint horizontal cracks between the

notches, which are typical shear failure surfaces. The large horizontal

63




150

é; 109
=
:

() 59

@

Figure 29,

COMPOSITE STRENGTHS

T
AsA/3xe2
ASG6/5245-C

nnnnnn

STRENGTH <KSI>

23 0E6 7
109 DEG -
— 1o

C6000/1506
®

SHEAR

Unidirectional Carboen Fiber Reinferced Composite In=Plane

Shear Streagths.

64



Figure 30. Typical Failed Iosipescu Shear Test Specimen.
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cracks near the notches act as stress concentration dampeners and assist
in maintaining a uniform shear strain field in the gage section [9].
Shear modulus values are presented in bar chart form in Figure 30.
Only small differences are seen between the four materials at room
temperature. The shear modulus tends to follow the axial tensile
modulus, i.e., the higher axial tensile modulus materials having the
higher shear modulus and conversely the materials with lower axial
tensile moduli having the lower shear moduli. The elevated temperature
shear modulus values were similar to the room teﬁperature values for
three of the composites, with the T300/CYCOM 907 material falling to
only 25 percent of its room temperature value at 100°C. This dramatic
degradation was also quite evident in the neat resin testing of this

material.

The bar chart showing the ultimate shear strain values for the four

composite materials is not shown due to calibration problems affecting

shear strain wvalues. The room temperature shear strain for the

€6000/1806 is artificially low due to the strain gagé calibration being
set too low for the material. The lack df variation between the four
materials shear strain in Table 8 is artificial due to full range strain
gage limitations. The baseline matrix material for this multi-year
study has been the Hercules 3502 epoxy. As can be seen, the
cofresponding component exhibited the lowest shear strain of the four
composites at - both environmental conditions. For three of the
composites tested at the elevated temperature condition, the strain gage
rosettesrbecame saturated. Thus, only the shear strain of the AS4/3502
composite is a true ultimate since these specimens did fail before the

strain gages failed. The AS6/5245-C and T300/CYCOM 907 composites
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exhibited high shear strain at room temperéture as well with the speci-
mens continuing to carry load after the strain gage rosette had failed.
The strain gages used were Measurements Group No. EA-13-062TV-350
shear gage rosettes. They are limited to 3 percent strain per gage or 6
percent total when wired in a half bridge as here. Higher elongation
strain gages are available, to increase the ultimate strain capability
to 10 percent strain per gage, i.e., 20 petcent total. 1In the future,
Measurements Group Gage No. EP-08-062TH-120 will be used for these
higher strain capability applications, as materials continue to be

developed which exhibit higher strains to failure.

5.6 Composite Transverse Coefficient of Thermal Expansion Tests
Results
Transverse coefficient of thermal expansion tests were performed on
all four composite material systems. Three of the composite materials

behaved relatively 1linearly over the full temperature range. This

resulted in a constant value of CTE for those three systems. Figure 32

is an example of the linear behavior of the AS4/3502 composite. Average
curve-fit parameters for the four materials are listed in Table 16.
Both thermal cycles are plotted as asterisks every 10°C, with the
straight curve-fit line being drawn on top of the data points. The

T300/CYCOM 907 composite behaved in a highly nonlinear manner, Figure 33

being an example. 'The top set of data points represents the first
cycle. A drop-off in expansion is quite noticeable at the high
temperature end. This drop-off was due to a shrinkage‘ of the test
spécimen above 90°C. This was verified by measuring tﬁe specimens

before and after testing and comparing the final length with the initial
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" Table 16
Average Composite Transverse Thermal Expansion
Test Results
CTE = C; + C,T (1075/°C)

Material Coefficients
System c, C,
AS4/3502 30.8 0
AS6/5245-C 32.8 0
T300/907 30.4 0.196
€6000/1806 33.2 0

length. Table 17 shows the initial, final, and change in length for all
composite CTE specimens. The significant shrinkage experienced by the
T300/CYCOM 907 specimens will be noted. The C6000/1806 specimens
exhibited a small 1ength’increase, buf no effect of this was seen in the
CTE data curves. The second thermal cycle data points are plotted as
the lower row of asterisks. The initial slopes of the two cycles are
similar, as shown on the plot. The second cycle data demonstrates a
continuous smooth curve without any drop-off at the higher temperature
portion of the test, This impiies that the test specimeﬁs ‘had
stabilized after only one thermal cycle and that the second cycle curve
is probably a better measure of actual material behavior. Figure 34 is
the same T300/BP907 test (Figure 33) with only the second thermal cycle
plotted. The values given in the data tables for this materiai are
taken from only the second thermal cycle data points. Individual test

results and test plots are given in Appendices A and B, respectively.

5.7 Composite Transverse Coefficient of Moisture Expansion Tests

Transverse coefficient of moisture expansion (CME) tests were
also performed on the four carbon fiber-reinforced composites using the

same test apparatus as used on the neat resin, and described in Section

3.3 and shown in Figure 5.
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Table 17

Lengths of Individual Coefficient of Thermal Expansion Specimens
Before and After Testing

4
Material Specimen Initial Final Change in
System No. Length Length Length
‘ (in) (in) - (in)
L3
AS4/3502 1 5.106 5.106 ~0.000
' 2 5.107 5.106 -0.001
3 5.107 _ 5.108 +0.001
AS6/5245-C 1 5.104 5.105 +0.001
2 5.104 5.104 0.000
3 5.105 5.105 0.000
T300/907 1 5.115 5.098 -0.017
2 5.119 5.099 -0.020
3 5.118 5.098 -0.020
€6000/1806 1 5.125 5.129 +0.004
2 5.135 5.141 +0.006
3 5.130 5.135 +0.005
The slopes of the transverse strain vs moisture curves for the
composites were typically constant; the average coefficient of moisture
expansion valﬁes are presented in Table 18. These are averages of three
to six individual tests per material. Individual CME values are given
in Appendix .A. Plots for individual test specimens are given in
Appendix B.
Table 18
Average Composite Transverse Moisture Expansion
Coefficient Test Results
N Material Transverse CME
System (1073 /3M)
» . AS4/3502 | | 4.67
AS6/5245-C 4.02
T300/907 2.59
€6000/1806 2.83
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SECTION. 6

- SCANNING ELECTRON MICROSCOPY

4.1 Introduction

Scanning electron microscopy (SEM) was ﬁerfdrmeq on selected failed
neat resin test specimens. The Composite Materials Research Group
(CMRG) has wutilized the SEM for many years to study both composite
material fractures and unreinforced (neat) resin fractures. The SEM
provides a large depth of field at high magnification and is thus much
more useful in the study of the rough fracture surfaces seen in
neat resins than the optical microscope. A JEOL-35C scanning electron
microscope was used for all of the work of this present study. This
unit has a magnification range from 10X to 180,000X, a depth of field of
30p at 1000X, and a resolution of 60A. Magnifications between 10X and
500X are particularly informative when examining neat resin fractures,

although higher magnifications (up to 5000X) are sometimes useful.

4,2 Specimen Preparation

Repfesentative failed specimens were mounted for examination to
show the representative failuré features for the two neatv resins
studied. A large number of photographs were also taken during the first
and second years of the present study [1,2], which provide a good
detailed data base for studying neat resin failure surfaces. Similar
features were seen again this year in the two neat resins observed.
Only a small number of SEM photographs will be presented here due to the

similarity in surface features.




Specimens were cut from failed neat resin specimens using a Bueller
No. 4150 silicon carbide abrasive cutoff blade. All SEM specimens were
then cleaned in an ultrasonic cleaning tank to remove any surface
debris. Duco cement was used to bond the specimens to the 25.4 mm
diameter brass mounting disks. Silver conducting paint was then applied
between the brass disk and speciﬁens'along the bond line to»ensute a
good conducting path between the two. Gold was then vapor-deposited on
all specimens to make them electrically conductive and prevent the
accumulation of electrons on the fracture surface during the SEM
viewing; Any accumulation of electrons on the surface of a specimen,
when exposed to the high energy electron beam, causes flaring and hence

a poor viewing image.

4.3 Explanation of SEM Photographs

Failed specimens representing several test conditions for each
resin type were viewed and photographed. A brief description of each
'SEM photograph is given below each figure.

The SEM records information directly across the bottom of each
photograph. Referring to Figuré 35 as an example, the caption reads: 25

KV X15 2201 1000.0U UW 85. The interpretation is as follows:

25 RV Electron beam accelerating voltage, in kilovolts
X15 Magnification
2201 Photograph number

1000.0U Length of scale bar, in microns
Uw 85 The SEM unit identification number, i.e., University of
Wyoming and the current year, 1985.

The specimen numbering system is summarized here for convenience.
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A typical specimen name is divided into four sets of characters. For
example, the specimen number in Figure 35 1is NTAADS. This 1is

interpreted as follows:

identifies the program, NASA-Langley neat resin testing.
identifies type of mechanical test. '

identifies resin system,

identifies test temperature.

identifies moisture condition.

oAz

5 identifies the specimen number.

The complete set of codes for all specimens tested is as follows:

Type of Mechanical Test

T Tension
S Torsional Shear
F Fracture Toughness

Resin System

A 1806
B ERX-4901B(MPDA)

Test Temperature

A 23°C
B 82°cC
C 121°C
D 60°C
E 100°C

Specimen Conditioning

D Dry
W Moisture-Saturated

Specimen Number
1-9

This code is different from those used in the previous two studies.
From five to nine specimens were tested.at each condition. The two
additional temperatures, 60° and 100°C were used for the ERX-4901B(MPDA)

epoxy since it degraded to such a high degree above these temperatures.
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4.4 Neat Resin Tension

Failed specimens were studied for the two neat resin systems at
each test condition. .Similar fracture surfaces as seen previously [1,2]
were seen in the neat resins studied during the present year. .A failure
initiation site could be identified in most cases, located in the smooth
zone of the fracture. A transition zone surrounded the smooth zone of
the fracture becoming a rough area which is thought to be the last
region to fracture at failure. Descriptions are give at the bottom of
each photograph directly under the figure caption to allow viewing the

photograph while reading the description.

4.5 Neat Resin Shear

Failed specimens were studied in the SEM for each test condition.
Features were similar to those seen in the previous studies [1,2]. A
swirl pattern was evident overall with surfaces being similar to the

tension fracture surfaces.

4.6 Neat Resin Fracture Toughness

One specimen at each test condition was viewed and photographed to
identify surface features characteristic of the two neat resins studied.
Many of the fracture surfaces were smooth with little evidence of crack
arrest being seen. This was predominant in many of the specimens
indicating unstable crack growth in these specimens. Unstable crack

growth is one indication of a brittle material.
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Figure 35. Overall Photograph of 1806 Epoxy Tension Specimen NTAADS,
23°C, Dry Condition.

Failure initiation zone is at upper right corner progres-
sing to the left.
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Figure 36. Overall Photograph of 1806 Epoxy Tension Specimen NTABDS,
82°C, Dry Condition.
Failure initiation zone is at wupper 1left near the
surface. Rough zone is more predominant compared to the :
23°C test temperature in Figure 35. ;
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Figure 37.

Overall Photograph of 1806 Epoxy Tension Specimen NTACD2,
121°C, Dry Condition.

Fracture initiated at void in lower left corner with a
much coarser surface than the lower temperature
specimens.
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Figure 38. Close-up Photograph of 1806 Epoxy Tension Specimen NTAAW3

23°C, Moisture-Saturated.

Showing failure initiation point and surrounding area.

An elongated wvoid region
location for this failure.
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Figure 39. Overall Photograph of 1806 Epoxy Tension Specimen NTAAW3,
82°C, Moisture-Saturated.
’ The failure began in upper right corner and progressed to
; the left across the specimen.
»~
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Figure 40. Overall Photograph of 1806 Epoxy Tension NTACW4, 121°C,
Moisture-Saturated.

This fracture surface is quite smooth and atypical for
neat resin failures.

84




l
i
|
|
!
|
!

»
Figure 41. Overall Photograph of ERX-4901B Epoxy Tension Specimen
. NTBAD6, 23°C, Dry Condition.
) »
Fracture surface is smoother than most failures with
initiation point at center left.
»
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Figure 42. Overall Photograph of ERX-4901B Epoxy Tension Specimen
NTBBD6, 82°C, Dry Condition.

Very typical failure surface for neat resin fractures
with three zones apparent.
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Figure 43.

Overall Photograph of ERX-4901B Epoxy Tension Specimen
NTBCD1, 121°C, Dry Condition.

Typical fracture surface for neat resin with initiation
at lower left cover and rough area to right.
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Figure 44. Overall Photograph of ERX-4901B Epoxy Tension Specimen
NTBAW9, 23°C, Moisture-Saturated.

Very smooth fracture surface which indicates a brittle
failure.
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Figure 45. Overall Photograph of ERX-4901B Epoxy Tension Specimen
NTBDW4, 60°C, Moisture-Saturated.
M Much rougher surface over all the fracture surface.
} Three zones are not apparent in this specimen. Moisture
' plasticizing of the resin seems to have changed the
fracture surface features and failure mode.
»




Figure 46. Overall Photograph of ERX-4901B Epoxy Tension Specimen
NTBBW1, 82°C, Moisture-Saturated.

Extremely rough surface 1is seen here due to the
plasticizing effect on the resin by water absorption.
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Figure 47.

Overall Photograph of 1806 Epoxy Shear Specimen NSAADS,
23°C, Dry Condition.

The smooth surface indicates a brittle failure at this
test condition.
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Figure 48. Overall Photograph of 1806 Epoxy Shear Specimen NSABD4,
82°C, Dry Condition.

This failure is much more typical with the initiation
point at the top left and progressing inward.
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Figure 49. Overall Photograph of 1806 Epoxy Shear Specimen NSACDS5,
121°C, Dry Condition. '

This failure 1is somewhat more coarse than the lower
temperature failures with more swirl appearance.
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Figure 50. Overall Photograph of 1806 Epoxy Shear Specimen NSAAWS5,
23°C, Moisture-Saturated.

Failure initiation began at the top center of the

photograph with the swirl pattern extending away from it.
The fracture surface is relatively smooth.
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Figure 51. Overall Photograph of 1806 Epoxy Shear Specimen NSABWS,
82°C, Moisture-Saturated.

‘This failure surface is quite coarse which is indicative
of higher temperature and/or moisture absorption.
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Figure 52. Overall Photograph of 1806 Epoxy Shear Spe01men NSACW4,
121°C, Moisture-Saturated.

This failure has a deep swirl that looks like a circular
staircase in overall shape at the top of the photograph.
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Figure 53. Overall Photograph of ERX-4901B(MPDA) Shear Specimen
' 'NSBAD4, 23°C, Dry Condition.

Surface at right is part of transition zone with the
smooth surface at the left caused by the explosive nature
of the failure and the brittle nature of the material.
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Figure 54. Overall Photograph of ERX-4901B(MPDA) Shear Specimen
NSBBD1, 82°C, Dry Condition.

Failure surface is relatively smooth with some evidence

of the transition zone at the left and top of the
photograph. '
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Figure 55. Overall Photograph of ERX- 4901B(MPDA) Shear Specimen
NSBCD4, 121°C, Dry Condition.

Circular striations are evident around the circumference
of the specimen.
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Figure 56.

Overall Photograph of ERX- 4901B(MPDA) Shear Specimen
NSBAW2, 23°C, Moisture-Saturated.

This failure began at the top right of the photograph

near the surface and propagated radially from that point
inward.
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Figure 57. Overall Photograph of ERX-4901B(MPDA) Shear Specimen
- NSBBW2, 82°C, Moisture-Saturated.

| The extremely coarse surface seen here is indicative of
| moisture plasticization and elevated temperature.
Similar coarseness was evident in the tensile failures
for this material at similar preconditioning and test
conditions.
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Figure 58.

Overall View of 1806 Fracture Specimen NFAAD5, 23°C, Dry
Condition.

Cut notch is at left margin with small striations

evident. No evidence of crack arrest is evident at this
test condition.
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Figure 59. Close-up Photograph of 1806 Fracture Specimen NFABDS,

82°C, Dry Condition.

Cut notch is at bottom of photograph.
of the fracture changes quickly to the rougher transition
zone with no evidence of a ridge which would indicate a

crack arrest.
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Figure 60. Close-up of 1806 Fracture Specimen NFACD6, 121°C, Dry
Condition.

Cut notch is at bottom of photograph with the coarseness
increasing at the higher test temperature.
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Figure 61. Overall Photograph of 1806 Fracture Specimen NFAAW11,
- 23°C, Moisture-Saturated.
Cut notch is at left edge of photograph.
'
»
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Figure 62. Close-up Photograph of 1806 Fracture Specimen NFABW2,
82°C, Moisture-Saturated.

Cut notch is at the bottom edge of the photograph. A
much coarser surface is evident at this elevated
temperature and after added moisture similar to a tensile
fracture surface.
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Figure 63. Photograph of ERX-4901B(MPDA) Fracture Specimen NFBAW4,
23°C, Moisture-Saturated.

Photograph shows ridges caused by arrest and propagation
of crack front. :
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Figure 64. Overall View of ERX-4901B(MPDA) Fracture Specimen NFBBDS,
82°C, Dry Condition.

Cut notch is at the left of the photograph with what

could be a ridge indicating a crack arrest in the right
half of the photograph.
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SECTION 7

¥ CONCLUSIONS

Two new neat resin systems, viz., American Cyanamid CYCOM 1806 and
Union Carbide ERX-4901B(MPDA), were successfully cast into various test

specimens and mechanically characterized. Some additional

characterization of a previously tested resin, viz, American Cyanamid
CYCOM 907 (formerly BP907) was performed at -80°cC, dry to énhance its
data base. Tension, torsional shear, TIosipescu shear, single-edge
notched-bend fracture toughness, coefficient of thermal expansion, and
coefficient of moisture expansion tests were conducted to generate
mechanical properties as functions of temperature and moisture.
Properties generated for these neat resins were Young's modulus, E,
Poisson’s ratio, v, shear modulus, G, tensile ultimate strength, au,

. u . s .
shear ultimate strength, 7=, coefficient of thermal expansion, «

coefficient of moisture expansion, B, and Mode I strain energy release

rate GIC'

Four carbon fiber-reinforced unidirectional composites, viz.,

Hercules AS4/3502, NARMCO AS6/5245-C, American Cyanamid T300/CYCOM 907,

and €6000/CYCOM 1806 were tested. Flat panels were supplied by NASA-

Langley in sufficient quantities to perform various mechanical testing

on these four composites. All specimens were machined and prepared in

the CMRG fabrication laboratory.

Longitudinal and transverse tension, in-ﬁlane shear and transverse
coefficient of thermal expansion, and transverse coefficient of moisture
expansion tests were conducted to generate mechanical properties as a

function of temperature. Properties generated for the four composite




materials were axial and transverse moduli, E,; and E,,, major Poisson's
ratio, Vlz,. in-plane shear modulus, G,,, tensile ultimate streﬁgths,.
allu and azzu, shear ultimate strength, leu, transverse coefficient of
thermal expansion, a;;, and transverse coefficient of moisture expan-
sion, B;,.

The neat resin mechanical properties will be input to a curve-fit
computer program to reduce each property to an equation describing that
property as a function of temperature and moisture. After the cusve-fit
equations are generated they will be incorporated into the Composite
Materials Research Group's micromechanics computer program WYO2D and
predictions of composite response of these high strength carbon fiber-
reinforced composites will be made. Correlations of these predictions
will be done to verify the finite element micromechanical model. These
predictions and correlations will be presented in a subsequent report.

Processability of the two neat resin systems was quite different.
The CYCOM 1806 epoxy was much more viscous and required more effort to

cast than the ERX-4901B(MPDA). The CYCOM 1806 epoxy was premixed by the

~ manufacturer while the ERX-4901B(MPDA) required formulation just prior

to being cast into test specimens. The ERX-4901B(MPDA) epoxy exhibited
the viscosity of water, similar to the ERX-4901A(MDA) version character-
ized last year [2]. It required the sealing of mold seams to prevent
the watery resin from leaking out of the molds. The cure cycle for the
ERX-4901B(MPDA) epoxy was quite long, being comparable to the MDA
version tested last year [2].

The CYCOM 1806 epoxy performed as well as any neat resin tested to
date [1,2]. It has only a slightly lower Young's modulus and shear

modulus than other resin systems, with comparable tensile .and shear
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strengths at most environmental conditions. The CYCOM 1806 did degrade
slightly more at the hot, wet conditions than somec of the previous resin
systems tested.

The ERX-4901B(MPDA) epoxy exhibited the highest room temperature,
dry Young'’s modulus of any polymer tested to date, viz, 5.6 GPa (0.81
Msi). It also exhibited very high tensile and shear strengths and shear
modulus, as high or higher than the MDA version of this epoxy [2].
However, The ERX-4901B(MPDA) degraded to a much greater degree at all
moisture-saturated conditions than any previous resin system. Even the
room temperature, wet properties were quite poor. |

The CYCOM 1806 reached a moisture saturation level of only 2.9
percent while the ERX-4901B(MPDA) absorbed 10.2 percent moisture at
saturation, which is the highest moisture level of all ten neat resins
tested to date in this program.

The CYCOM 1806 epoxy was judged to .be a good candidate for use in
high performance composites. It processed relatively easily and
performed almost as well as the HX-1504 and 5245-C matrix materials
tested last year. The ERX-4901B(MPDA) epoxy is a model resin system
similar to the ERX-4901A(MDA) epoxy tésted last year. It has excellent
tensile and shear‘properties at the room temperature, dry condition, but
degraded rapidly at elevated temperatures and after being moisture
saturated at all test temperatures. Although the ERX-4901B(MPDA)
version of this epoxy had slightly higher stiffness and strength values
then the ERX-4901A(MDA) version, it degraded much m§re readily and to a
higher degree than the (MDA) version tested in last year'’s program.

The four carbon fiber-feinforced composites tested provided the

first composite property data for use in micromechanics correlation
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studies. The composite material teét_»data indicated the materials
retained their properties quite weli at the 100°C test temperature. The
T300/CYCOM 907 composite degraded to the greatést degree of the four
composites as expected. Since each composite incorporated a different
fiber, direct comparisons are diffiéult to make.

Additional scanning electron microscope photographs were taken to
further document fracture surfaces in unreinforced (neat) polymers. A
large library of SEM photographs has been accumulated during the three
years of this grant, providing a basis for future study.

Lack of satisfaction of the isotropic relation relating the
neat resin experimental stiffness parameters E, v, and G was again
noted. Temperature and moisture conditions appeared to exacerbate the

differences between isotropic theory and the experimental values,
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APPENDIX A
Tables of Individual Test Specimen Results
for the Three Neat Resins and

Four Carbon Fiber-Reinforced Composites
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Table A25

INDIVIDUAL TENSION STRENGTHS AND MODULI FOR
CYCOM 907 NEAT RESIN, DRY

Ultimate
Test Tensile Tensile Tensile
Temperature  Strength Moduli Strain Poisson's
Specimen (°C) (MPa) (ksi) (GPa) (Msi) (percent) Ratio
NCTPO 1 -80° 103 14.9 3.7 0.53 3.4 0.05%
2 81 11.8 3.9 0.56 2.2 --
3 101 14.6 3.9 0.57 2.9 0.06%*
4 90 13.1 4.2 0.61 2.1 0.17
5 . 106 15.3 4.5 0.71 2.7 0.17
6 113 16.4 4.5 0.65 2.5 0.13
7 107 15.5 4.1  0.60 3.0 0.13
Average 101 14.7 4.1 0.59 2.8 0.15
Standard Deviation 7 0.9 0.3 0.04 0.2 0.02
LTDPO 7 [2] 23° 82 11.9 3.2 0.47 3.1 0.42
8 96 13.9 3.2 0.47 5.1 0.42
9 81 11.7 3.3 0.48 3.0 41
Average 86 12.5 3.3 0.47 3.7 0.42
Standard Deviation 8 1.2 0.0 0.06 1. 0.00
LTDP 11 [2] 82° 68 9.9 2.8 0.41 5.0 0.44
12 66 9.5 2.7 0.39 6.9 0.41
13 67 9.7 2.8 0.41 5.4 0.43
14 ' 66 9.6 2.7 0.39 5.7 0.41
15 61* 8.8% 2.8 0.40 2.9 2.43
Average 67 9.7 2.8 0.40 5.4 0.42
Standard Deviation 1 0.2 0.1 0.01 0.0 0.01
LTDP 21 [2] 121° 11 1.6 0.6 0.08 >8.2 0.31
22 10 1.5 0.3*% 0.04% >8.2 0.44
- 23 15 2.1 1.0 0.15 >8.2 0.35
24 16 2.3 1.0 0.14 >8.2 0.39
25 14 2.0 0.8 0.11 >8.2 0.39
Average 14 2.0 0.8 0.12 >8 . 2# 0.38
» . Standard Deviation 2 0.3 0.2 0.03 0.02

*Not included in average
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Table A26

INDIVIDUAL IOSIPESCU SHEAR STRENGTHS AND MODULI FOR
CYCOM 907 NEAT RESIN, DRY

Ultimate
Test Shear Shear Shear
Temperature Strength Modulus Strain
Specimen (°C) (MPa) (ksi) (GPa) (Msi) (percent)
NCBPO 1 -80° 47.6 6.9 1.6 0.24 3.02
2 55.1 8.0 1.8 0.26 3.44
3 52.4 7.6 1.7 0.25 3.19
4 55.1 8.0 2.1 0.31 3.44
5 63.4 9.2 2.3%  0.33% 1.84%
6 55.1 8.0 1.8 0.26 3.28
Average 55.1 8.0 1.8 0.26 3.27
Standard Deviation 4.8 0.7 0.2 0.03 0.18
LIDPO 1 (2] 23° 27.6 4.0% 1.24 0.18 2.30
2 33.8 4.9 1.31 0.19 3.00
3 53.1 7.7 1.17 0.17 4.90
4 34.5 5.0 1.17 0.17 3.00
5 58.6 8.5 1.03 0.15 >6.0
Average 44.8 6.5 1.17 0.17 3.30
Standard Deviation 12.4 1.8 0.07 0.01 1.10
LIDP 14 82° 46.9 6.8 1.17 0.17 >6.0
15 46.9 6.8 1.03 0.15 >6.0
16 46.2 6.7 0.97 0.14 >6.0
17 44.8 6.5 0.97 0.14 >6.0
18 43.4 6.3 0.97 0.14 >6.0
Average 45.5 6.6 1.03 0.15 >6.0#
Standard Deviation 1.4 0.2 0.07 0.01
LIDP 21 121° 24.1 3.5 0.69 0.10 >6.
22 28.3 4.1 0.83 0.12 >6.0
23 27.6 4.0 0.76 0.11 >6.0
24 29.0 4.2 0.76 0.11 >6.0
25 29.0 4.2 0.83 0.12 >6.0
Average 27.6 4.0 0.76 0.11 >6.0#
Standard Deviation 2.1 0.3 0.07 0.01

*Not included in average

#Strain Gage saturated, ultimate strain not measured
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Table A27

INDIVIDUAL FRACTURE TOUGHNESS VALUES FOR
1806 NEAT EPOXY AT DRY CONDITION

Specimen Test Mode I Strain Energy
Number Temperature Release Rate
o in-1b

(J/m?) =)

NFDEO 1 23° 141 0.8
2 : 51 0.3*
3 136 0.8
4 104 0.6
5 109 0.6
6 104 0.6

7 102 0.6
8 163% 0.9%
9 156% -0.,9%

10 114 0.7

Average 116 0.7
Standard Deviation 16 0.1

NFAEO 1 82° 401 2.3
2 406 2.3
3 360 2.1
4 119% 0.7%
5 166%* 0.9%
6 166% 0.9%
7 14% 0.1
8 397 2.3
9 581% 3.3%

10 309 1.8

Average 375 2.1
Standard Deviation 41 0.2

NFCEO 1 121° 812 4, 6%
3 732% 4 2%
4 808% 4. 6%
7 55 0.3
8 93 0.5
9 199 1.1

10 71 0.4

Average 105 0.6
Standard Deviation 65 0.4

*Not included in average
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Table A28

INDIVIDUAL FRACTURE TOUGHNESS VALUES FOR 1806 NEAT
EPOXY AT MOISTURE SATURATED CONDITION

‘Specimen Test Mode I Strain Energy
Number Temperature Release Rate

(°C) in-1b
@/m2) (F2)

b

23° 407*
326
451%
295

NFWEO 1
2
3
4
5 303
6
7
8
0
2

b

231%
213%
253
319
280

>

o e R e 2N N
o a>p~m>§>\1\10\m>w

|

Average 296
Standard Deviation 27

o
N

82° 178
228%
28%
90

NFBEO 2
3
4
5
6 177
7
8
9
0

% %

173

221%*

120
29%*

OO MHEFEFOOE
*

NNWOoOOoOUNNWO

%

Average 148
Standard Deviation 40

o
N oo

1 121° 66

2 269%
3 132

4 25%
5 87

6 113
7
8
9
0

e
A

*

76
123
180

19%

%

OHOOOOOOO
HO~NP~ONUL = 0L S

Average 111
Standard Deviation 39

OO
N Oy

*Not included in average
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Table A29

INDIVIDUAL FRACTURE TOUGHNESS VALUES FOR
ERX-4901B(MPDA) NEAT EPOXY AT DRY CONDITION

_ Specimen Test Mode I Strain Energy
- Number Temperature Release Rate
(°C) in-1b

(J/mz)(““zﬁ—)

NFDBO 1 23° 272 1.6
2 : 314 1.8%
3 355% 2.0%
4 79% 0.5%*
5 156 0.9
6 114 0.7
7 119 0.7
8 304 1.7
9 211 1.2
10 161 0.9
Average 191 1.1
Standard Deviation 74 0.4
NFABO 1 82° 80 0.5
2 78 0.4
3 80 0.5
4 108* 0.6%
5 56%* 0.3%
6 84 0.5
7 98 0.6
8 116% 0.7%
9 56%* 0.3%
10 80 0.5
Average 83 0.5
Standard Deviation 7 0.0
None Tested at 121°
~
»
: *Not included in average
L - | 135
A




Table A30

INDIVIDUAL FRACTURE TOUGHNESS VALUES FOR
ERX-4901B(MPDA) NEAT EPOXY AT MOISTURE SATURATED CONDITION

Specimen _ Test Mode I Strain Energy
Number Temperature Release Rate
°C) 2y in-1b
(3/m2) ()
NFWBO 1 23° 48 0.3
2 84% 0.5%
3 37 0.2
4 56 0.3
5 46 0.3
6 49 0.3
7 64 0.4
8 115% 0.7%
9 24% 0.1%"
10 19 0.1
Average 50 0.3
Standard Deviation 9 0.1
NFBBO 1 82° 4.8% 0.27%*
2 72% 0.41%
3 5 0.03
4 1% 0.01x
5 2 0.01
6 5 0.03
7 3 0.02
8 6 0.03
9 1% 0.01x*
Average 4 0.02
Standard Deviation 2 0.01

None Tested at 121°

*Not included in average
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Table A31

INDIVIDUAL FRACTURE TOUGHNESS VALUES FOR
CYCOM 907 NEAT EPOXY AT DRY CONDITION

Specimen‘ Test Mode I Strain Energy
- Number Temperature Released Rate
(*C) 2y (in-1b
(3/m?) (=)

-80° 123%
171
149
L6
468
491
406
554%
579%
10 326
11 188
12 204
13 569%
* 14 563%
15 230

NCBFO

oIV SN

P WWREMFRWWNDMNNDNNOOHO

i
0
9
3%
7
8
3
.2%
3%
9
1
2
2%
2%
3

Average 293
Standard Deviation 133

o=
o~

*Not included in average




Table A32

INDIVIDUAL COEFFICIENT OF THERMAL EXPANSION RESULTS
FOR TWO NEAT RESIN SYSTEMS

Coefficient of Thermal Expansion (CTE)

(10°%/°C)
Resin Specimen Dry Moisture-Saturated
System Number Specimen
Number
CYCOM 1806 DN1801 58.4 D186W4 63.7 *
DN1802 58.0 D186WB 62.8
DN1803 48.1 D186WD 63.1
Average 58.2 63.2
Standard Deviation 0.2 » 0.5
-60°C 23°C
ERX-4901B(MPDA) DN4901 Dry 22.5 59.1
DN4902 23.1 61.4
DN4903 22.3 64.2
Average 22.6 61.6
Standard Deviation ‘ 0.4 2.6
-60°C 23°C
D49BWA Moisture 11.0 87.7
D49BWB Saturated . 18.8 93.5
D49BWC 10.8 90.3
Average 13.5 90.5
Standard Deviation 4.6 2.9
ERX-4901B(MPDA) Equations
(L Dry CTE = 4.895E - 05/°C + 4.413E - 07 x T(°C)/°C
(2) 5.082E - 05/°C + 4.615E - 07 x T(°C)/°C
(3) 5.256E - 05/°C + 5.040E - 07 x T(°C)/°C
(4) Wet CTE = 6.647E - 05/°C + 9.252E - 07 x T(°C)/°C
(5) 7.277E = 05/°C + 8.998E - 07 x T(°C)/°C
(6) 6.828E - 05/°C + 9.577E - 07 x T(°C)/°C

* CYCOM 1806 CTE linear over temperature range
%% CTE values calculated from equations 1 - 3
# CTE values calculated from equations 4 - 6
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Table A33

: INDIVIDUAL COEFFICIENTS OF MOISTURE EXPANSION
hd ' OF THE TWO NEAT RESIN SYSTEMS TESTED

v _ - Specimen Coefficient of Moisture Expansion
- - Resin System " Number (1073 /%M)
CYCOM 1806 DNMEC1 2.34
DNMEC2 2.58
DNMEC3 2.57
DNMEC4 2.60
DNMEC5 2.57
DNMEC6 1.72
Average 2.53

Standard Deviation

ERX-4901B (MPDA D4901BO 1.01

D4901B1 1.21
D4901B2 0.74
DN49011 0.67%
DN49012 0.50%
Average 1.00
Standard Deviation 0.23

*Not included in average
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Table A62

INDIVIDUAL TRANSVERSE COEFFICIENT OF THERMAL EXPANSION
TEST RESULTS FOR FOUR CARBON-FIBER REINFORCED COMPOSITES

AT DRY

Transverse Coefficient of Thermal Expansion

CONDITION

* CTE Non-linear over temperature range

154 -

Material Specimen : CTE = C1 + C2(T)
~ System Number €,(10°5/°C) C,(10°8/°C2%)
AS4/3502 D35901 30.9 ---
o D35902 30.8 ---
D35903 30.8 ---
Average 30.8
Standard Deviation 0.1
AS6/5245-C D52901 33.4 -
' D52902 32.2 ---
D52903 32.8 ---
Average 32.8
Standard Deviation 0.6
T300/BP907* DBP9A1l 30.0 0.195
' DBP9A2 30.3 0.198
DBP9A3 30.8 0.185
Average 30.4 0.196
Standard Deviation 0.4 0.007
€6000/1806 D18901 33.1 “--
D183902 33.3 ---
D18903 33.3 ---
Average 33.2
Standard Deviation 0.1




Table A63

INDIVIDUAL TRANSVERSE COEFFICIENT OF MOISTURE EXPANSION
TEST RESULTS FOR FOUR CARBON-FIBER REINFORCED COMPOSITES

Material Specimen Transverse Coefficient of Moisture Expansion
System Number (10-3 /%M)
ASL/3502 DN35C1 | 5.14
' DN35C2 5.32
DN35C4 o 3.54
DN35C5 2.16%
Average 4.67
Standard Deviation 0.98
AS6/5245-C DN52C1 8.11x*
DN52C2 3.22
DN52C3 3.14
DN52C4 4.61
DN52C5 3.35
DN52C6 5.76
Average 4.02
Standard Deviation 1.14
T300/BP907 DN90C1 2.79
DNS0C2 3.02
DN90C3 2.09
DN90C4 2.38
Average 2.59
Standard Deviation 0.29
C6000/1806 DN18C1 3.39%
DN18C2 1.85%*
DN18C3 2.74
DN18C4 2.83
DN18C5 3.27
DN18C6 2.47
Average 1 2.83
Standard Deviation 0.33

*Not included in average
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INDIVIDUAL FIBER VOLUME AND VOID VOLUME DETERMINATIONS FOR
FOUR CARBON FIBER-REINFORCED COMPOSITES

Material
System

Table A64

Sample
Number

AS4/3502

AS6/5245-C

T300/BP907

€6000/1806

1
2
3

Mean .
Standard Deviation

1

2

3

Mean

Standard Deviation

1
2
3

Mean
Standard Deviation

1

2
3

Mean
Standard Deviation
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APPENDIX B
Individual Test Specimen Stress-Strain Curves for the
Three Neat Resins and

Four Carbon Fiber-Reinforced Composites
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